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On the zeros of the g-analogue exponential function
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Department of Physics, State University of New York at Binghamton, Binghamton,
- NY 13902-6000, UJSA

Received 12 July 1993, in final form 14 December 1993

Abstract. An asymptotic formula for the zeros, z,, of the entire function ¢,(x) for gx1 is
obtained. As ¢ increases above the first collision point at g =0.14, these zeros collide in
pairs and then move off into the complex z plane. They move off as (and remain) a complex
conjugate pair. The zeros of the ordinary higher derivatives and of the ordinary indefinite
integrals of e,{x} vary with ¢ in a similar manner, Properties of ¢,(z) for z complex and
for arbitrary ¢ are deduced. For 0g<1. e,(z) is an entire function of order 0. By the
Hadamard-Weierstrass factorization theorem, infinite product representations are obtained
for e,(z) and for the reciprocal function e;'(z). If g1, the zeros satisfy the sum rule
i (/z)=—1.

1. Motivation

The g-exponential function [1, 2], which occurs [3, 4] in the study of quantum algebras,
is defined by

D)= ¥ = | | )

n=0Q [ﬂ]!

where [#]!=[z] [n—1]...[1], [0]!=1. The ‘bracket #" for ¢ real and positive is defined
by

qx/z — g—x/Z

[xl = [x]“—‘m_—,,a (2)

and is called the ‘g-deformation’ of x. It, and e,(z), are invariant under g« 1/g. So,
unless noted otherwise, we take 0 <g<1 in this paper.

As g — 1, g (2} — exp(z) and as g — 0, g,(z) = 1 +z. From (1), we see that e,(z) is
an entire function (a transcendenta] entire function) and [e,(z)| S e,([z]) <exp(|z]). So
the series representation converges uniformly and absolutely for all finite z independent
of the value of g. e,(z) has an essential singularity at infinity. For x>0, e,{x) is positive,
But for x<0, we have an alternating series. For x<0 and g < ~0.14 there is a universal
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Figure 1. Plot showing universal behaviour of ¢,{x} Figure 2, An enlargement of the preceding figure,

for g< g¥ (g7 %0.14). The broken curve for x positive  g,(x) for g=0.1, in the small negative x region. The

is exp(x). curve for g=0.2 shows the dip that occurs in e,(x) >0
after a collision of an associated-pair of zeros. At
gt =0.14 the first two zeros, 2, and z3, collide and
move off the negative real axis into the complex z-
plane. They move off as {and remain) a complex
conjugate pair.

behaviour independent of the value of ¢ consisting of increasing amplitude oscillations
of decreasing frequency as x — (—co) (see figures 1 and 2).

However, not much is known quantitatively about ¢,(z). In particular, little is known
about its zeros. These zeros and the properties of e,(x) for x negative appear promin-
ently in a completeness relation [5, 9] for the g-analogue coherent states (cs)

j]&, o2l du(2) +J|2'>q K4 dg=1. (3)

Thus, in quantum field theory the properties of ¢,(z) are also important for the various
g-analogue diagonal operator representations [6, 7] analogous to the P-, Q-, and W-
representations in quantum optics.

In (3), the g-analogue cs, |z),, are eigenstates of the g-boson annihilation operator
where z is a complex number, a|z),=z]z),, with

aa* — #V2ata= gV (4

and [N, a*}=a", [N, a]=—a. Then,

|25g=N(z) ¥, 1> ®)

"
amt /]!

where N(z) =¢,(]2i*)~"/%. For the measure

du(z)=(1/2n)esiz1)e,( ~|2I%) d,l 2l do ®



Zeros of the g-analogue exponential function 3859
the first term in (3) gives [5, 6]

2 1 [ ) :

J.IZXZI da=3F — | x'e)(~x) d,xln)<n| @
n=0 [n]' o

with x=|z|2 In (7) the integral over (z]® is a g-integration over the interval from zero

to some {;>0 (i fixed) where —¢ =—{, is the largest zero of e,(z), —¢ the next largest,

etc.

Note that ,(x) in the negative x region is the significant factor in the measure. The
other factor e,(]z|%)={N(z)} >, is required only to cancel the normalization factor of
[22q-

The second term [7] in (3) also depends on the {i fixed) zero £;. The set of g-discrete
auxiliary states |Z>, are also eigenstates of an g, annihilation operator (see appendix

2)

AESEIC AR AT : ®)
. o (ql/4§k).i .
|Zp=M Y, —|j+k> (9
=0 +/[JT!
where
|2l = x= 47 L)
with k=0, 1,...; Mr=e,(¢'*xz)™"". So for the discrete measure
N 1 .
duﬁm%(—lzklz) de (11a)

1254 dﬂ=§ i : (7" %x)" ™ | ny e —xu). - {11y

n=0 k=0 [n—Kk}!
In (11a) and (115), e, in the negative x region also appears. The resolution of unity is
satisfied since [5, 7]

ot . ”_
[ e aprmty— § @20

o k=0 In—kK]!

eq(—xk)} (12)

is the g-analogue of Euler’s formula for I'{x),

In the completeness relation (3), the separate contributions from the g-bosons and
from the auxiliary ¢g-bosons depend on the choice made for the ith zero {7, of e,(z). It
is true that when both terms are combined, this dependence on {; cancels out. Neverthe-
less, for the g-boson term alone this £, dependence is very important mathematically,
by (12), and most likely is also important physically for g values sufficiently different
from 1.

Note that the upper integration limit in (12) need not be the absolute value of a
zero of e,. However, for £; as the upper integration limit, the standard Euler identity
followsas g — 1.

In complex analysis, the distribution of the zeros of an entire function is connected
with the growth of the entire function. This is another reason for a more quantitative
study of the zeros of ¢,(2).

Lastly, the e,(z) function frequently appears in the current literature on guantum
algebras. Knowledge of the simple properties of ¢,, and of the inverse function
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¢;'(2), for z complex and for arbitrary g should be useful to formal investigations, to
applications of g+symmetries, and to other applications of the e,{z) function in physics.

In section 2 we study the properties of the zeros of e (x) for g <g¥ (g7 =0.14). For
g« 1, asymptotic formulae for these zeros, and for those of its derivatives and indefinite
integrals are obtained. Section 3 examines the pairwise collision of associated zeros that
is found to occur as g increases above gf20,14. Section 4 then studies the properties
of the complex function e, (z) for z compiex and for arbitrary ¢. In section 5, we show
that e,(z) is an order zero entire function and obtain infinite product representations
for e, (z) and for the reciprocal function e;'(z). We show that the zeros of e, satisfy
the sum rule Za%, (1/z,)=—1 for g #1. The properties of Jackson’s E,(z) function are
discussed in appendix 1 since it occurs for a simple alternative realization of the g-
boson commutation relations. In appendix 2 we briefly review the properties of the
auxiliary g-boson operators &, and & . Appendix 3 contains some additional results
about ey(z).

2. Properties of the zeros of e (x) for g < ~0.14

Since e,(x) is defined for x<0 by a convergent alternating series with terms which
monotonically decrease in absolute value (after sufficiently many terms), we can reliably
analyse its behaviour numerically since the error in fruncating the series is less than the
absolute value of the first term dropped, provided the absoluie values of the terms have
already started to monotonically decrease.

However, before reporting numerical results, we will analytically obtain an asymp-
totic estimate of the values of the zeros of e,(x) which is extremely accurate when g«1.
Exton has shown [1, 2] that a less explicit procedure gives exactly the zeros of Jackson’s
g-exponential function [10] E{x) for g>1, and that it gives a good estimate for the
zeros of cos,(y) =Re{e,(iy)} and of sin(y)=Im{e,(iy)}. The method we propose in
this paper gives the same estimates as Exton’s in these three instances.

The series representation for the g-exponential function is

z
e,(z)= -
f n-O[ ]‘
When ¢ is small or » large, the deformation of » can be approximated,
gz -
[#],= w - (13a)
i—gq l1—g
or
2(1 —n)
~ 135
fl, 1—¢ (135)
where
p=q" (positive fourth root). (13¢)
We use this approximation to estimate [#],! and log([n],!) for n21:
=m{n=1)
[n],!= v {1-9(1-¢)...(1—¢7} (13d)

50

[0]!=1
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and

N
1= (1-q)

-2

Pli=g s {1-a-d+d}
[ﬂ][=p—n(n'-‘) {1_ _ 2+0( 4)} n>3 {14a)
D= e+ O >

where the O(g*) term vanishes in the last braces for n>3. Likewise,
log([n],)=—n{(n—Dlog p+log(1 —g)} +log{(1~g)(1~¢) ... (1—¢")}

$0
I]og([n]q!) =—n{(n—1) logp+log(1—q)} +log{1—g—¢+0(g")} nz3. (14D

As in applications of Stirling’s formulae, for ¢ small or # large we will set the ‘brace’
equal to ‘1’ in (14a), or set the second ‘brace’ equal to ‘1’ in (145), to obtain a simpler
‘approximate series’ or expression for analytic apalysis. For g small {(or » large) such
an ‘approximate series’ gives a good estimate of the behaviour of the ‘exact series’ of
interest. When desired, corrections from the brace factors can be systematically included
(see appendix 3).

For the g-exponential function, the associated ‘approximate series’ ef(x) is

ex) -~ eAx)=1+ T P —q)yy (15)
r=1

Note that the magnitude of the ‘rth term’ equais the magnitude of the ‘(r —1)st term’
when

2=2r
2
]

== "
So ‘e,x” is the largest term in magnitude when

2—2r -2
2l <Z—.
1-¢g 1—-g
in fact (see appendix 3) at the geometric mean of this interval

—2r

4

15 =r s

the ‘c,x” term dominates the sum in magnitude for &) (x) when ¢<0.043212 . ... Then

the sign of ;(—|#%|) equals (—)". Thus, €;(x) has infinitely many real negative zeros

when g<0.043212 .. ..

Sc to obtain an asympiotic estimate for the location of the »ih zero of ¢,(x) we

assign x a value @ such that the magnitude of the ‘nth term’ in (15} equals the magnitude
of the ‘(n~1)st term’. Thereby, the asymptotic formula for ji; is

e q(l-n)/2
1-g

n=1,2..... (16)
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We denote such asymptotic values by a tilde. For each such asymptotic estimate for
the zeros of a specific function which is given in this paper, we numerically find that
for n sufficiently large the associated fractional deviation is monotonic in #, with g fixed
(g=0.1 to 0.001).

Actually, for e,(x) there is a greater cancellation occurring than is suggested by the
above reasoning. In fact, for x= g, the sum of the ‘1’ plus the first #,=2n—1 terms in
the approximate series e;(x), see (15), vanishes. The remaining terms beyond the r,th
are negligible. In particular, if we use (16) to rescale x,

21 —ny
x,,=(*"1 p )y,, (17a)
then
Gx)=1+3 p >y (176)
rol
We call
2n=1
t+ 3 g =0 (17¢)
=]

the ‘asymptotic polynomial’ for e,(x). It vanishes for y,=—1I (independent of n}, so by
(174} the ‘improved asymptotic formula’ for the zeros of ¢,(x) is also (16).

For some of the other functions {e.g. the derivatives and indefinite integrals of e,(x))
considered in this paper, ‘improved asymptotic values’ can be obtained by solving the
associated ‘asymptotic polynomial’ for the g-analogue function of interest. For y=—1,
the ‘asymptotic polynomial’ automatically vanishes for the following functions: g,(x),
cos(y) =Re{e,(iy)}, sing(¥) =Im{e,(iy)}; and for g > 1 for E,(x), Cos,( ), and Siny(»),
which are discussed in appendix 1.

Table 1 shows that the fractional deviation of f, from the actual real parts, u,, is
arbitrarily small as g — 0 for the first eight zeros,

Zy =ﬂn+ivx

of e,(x). By (16), e,(x) has an infinite number of zeros when ¢+#0 or 1. By (16), for
fixed g#0 or 1, the separation between adjacent zeros increases as » increases since

1=y =q_”2(ﬁn‘ﬁu-—:)- (18a)
So, the frequency of oscillation of e,(x) decreases as x — (— ). Since

furt/Bn=1//q (185)

the zeros increase asymptotically in geometric proportion.
Similarly, for the turning points of ¢,(x), we find for n=1, 2, 3, ... that

—1/2
e 4 H
% 1-¢ (n+ 1) (19a)




3863

Zeros of the q-analogue exponential function

S6LTO LSEE0 00810 LEYT'D -F0SE 000°0— S LLOO 0¥19°0— 0880~ 0587
££PT0 9pIE0 L'161°0 6592°0 - 08£E0D vcro S 8ECT0~ b L6E°0— £78°0

9 L0 0Leg0 €LITO 000E°0 9t 680°0 SECRI'D ¥ 91 0— 8957°0— 00870
148770 ¥ BZEQ 90:T°0 LTTEO TOEL'D £¥LTO £6IE0— ¥ 191'0— €LLTO
15120 £07L°0 0¥EC0 99£€°0 66510 STLTO 9 0¥T0~ 9¢ vL00— 050
L1870 £ €0E'0 L8eZ0 TEPE0 . 60810 97080 LSLIO— 601 160°0— LYAN 1]
AN SLLTD TS1T0 PEVED 9¥610 19¢E°0 ERrAN Ly ¥ 190°0 00L' 0
TLLLOO ETHT0 6 E61°0 8 LEE'0 . 0T0T0 P Lo 85 9L0'0— $£811'0 €L9°0
9.8 +00°0 L1610 $¥91°0 ¥ 9TL'0 ' B E0TO 186¢°0 ¥ 8E0°0— L0 059°0
0¥ 020°0— - SELT0 [ALAN T 6080 +T00T0 L LOE'D 185 900'0— £¥0T'0 $T9°0
L9E 100°0— 08 L£0°0 6 LLO0 LS80 $161°0 LELED STOTO0 LvT'0 00970
9pel 000°0— L98 L0070 L 810°0 655T0 LSLLT0 £9LE70 05 TF0'0 6£LT0 SL50
S—doiv'1— 99T 100°0 L P00~ L9200 08510 9SLE'D 990900 ¥ £0E'0 0550
9 H6E8" 1~ £961 G000 9910°0— LLETO SEEID SILED 805L0°0 g 620 §I5°0
L—BLLY T~ S—HOLOE 962 C00°0~ 88 L90°0 £0010 8£9¢°0 L6580°0 L €550 0050
8§—HT08'1— 9—HLLR'Y 7829 000°0— 94 870°G 01 0900 TTSE0 6¥ £60°0 TELED LYo
6—dELR1- L—H615°L CLEL 00070 +Z 01070 05 210D 9LEED LY L6DO L¥6E°0 osh'o
ol —das+8'1— §—dgel’l ¢ —HIv6e6"Z— 945 €000 16 8£0°0~ LTTE0 L¥ 860°0 €TI0 o
IT—H60LT— 6—H059'1 9—-HLIF 9~ Z866 000°0 £ 060°0— S 0ig0 SLS600 1 82¥°0 oro
TI—HEIS |- 6—HESTT 9—HTEE - 196¢ 000°0 $0 ¥E0-0— 9 £CT0 LT 630°C Ero SLE'D
EI—HI58°1— 01 —Hps8T L—HdeE9T— §—HLYS'B 98010'0— £ve1'0 LS BLO0 6 ¥5P°0 058’0
ek 11-HELT'E 3—-Hi88'y— S —H0BET 156 £00°0— ovo1'0 86 29070 859K°0 LyAN )

*s Tl —-H99¢°¢ 6—HO65E'8— 9—-H01EY £9% 100°0— #0 990°0 85 1#0°0 [ELV'0 00E0C

ok £} —HOL6T 6-d63T’1— 9—HBE1 TIES 000'D— L6800 BF EI00 LTBYD SLT’0

Ak wk 01 —H=9¥L T~ L—Ht8s'E ¢S8T 000°0— 1T 1200 9L 1T0°0— 1 68¢°0 0520

*E e FH —HLOD"E— 8—H8PEL S —HIB09— €L 0100 $6 £90°0— £ S6E'0 €el'o

Hohk - TI-HLLR I~ F—dDIL'Y C-HLER 1~ £50 5000 seiro- SE0 oT'o

*hi *¥k EI-HILE |- 6—HIVe'1 9-HI196'v— 3027000 6991°0— 21150 SLT'O

- Ak *xk s 01 —-H6veT 9--Hobi'1— 2188 000°0 1L2T0— LyTso 0si'0
. A - I1—H8b8l L—dEp1'T— £11£ 600'0 LLSBO0O— £ FEPO sz1o

ok ok - €1 —dLeT'6 §-H106'C— $—HI6I'6 L6 ¥E00— ¥ 2at’0 0o1o

g=u L=H o=u ¢=u p=u g=H T=U |=u b

“1220 sputod GOISI[[0 oY} 243yM MOYS S3UN |BIUCZUOY] °,, (] > MONBIASP [RUONIRYY, 53}0USD
Anua ysusyse odm v E0102 ydo 151y o o) U sued [ear [pmyor o) woy) Uy opopdwkse syl Jo UH/(Mif - Uf) ‘suonEmasp euonel) Ay, *f oIqEL



3864 C A Nelsorn and M G Gartley

or
pe me ~1/2[ M} 195
Tn= Hnd (n+ 1) (195)

Equivalently, £ are the asymptotic estimates for the zeros of the ordinary first deriva-
tive ef(x)=de,(x)/dx. An improved estimate for the nth zero is obtained by solving
the associated asymptotic polynomial:

1—g
-1
1+ ¥ pm 2 D [y =0, (20)

mw= i

The asymptotic formula for the inflection points, i.e. for the zeros of the second deriva-
tive el(x) =d%e,(x)/d’x, is

~(r+1)/2
e g n
. . 21
y 1—g¢q (n+2) @1a)

For the rth derivative of e, (x), the asymptotic formula for the zeros is (r=1; n=
1,2,..)

—(nbr=13/2
W=-f—— (——-n ) (218)
l—g \n+r
The improved estimate is
—2{nFr—1}
= (21¢)
1—g
with the asymptotic polynomial
2n—1
i+ 3 T ) (mAr=1) ... (m+ 1Dy =0. (21d)

m=

Int the same manner, we consider the indefinite integral

&N x)= J i e4(¥) dy +constant
SN
A 32
o0 xn+1
E‘n {n+ D[

where the constant has been chosen so e§ ’(0)=0. The asymptotic “zeros’ of e5 V(x)
50 =0 and for n=1,2,... at

are at Z
—(n=1)/2
_ n+1
A=t =) @

(22)
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For the rth indefinite integral of e,(x), the asymptotic formula for the zeros is (rz1;
n=1,2,..) -

X "= —%_;m ("—n—“) (236)
The improved estimate is
| X = —I%:Dyﬁ"’ (23c)
with the asymptotic polynonﬁ-al
L5 i y'=0. (23d)

vl s (m+rYm+r=1)... (n+1)

Figure 3 displays the indefinite integral of e,(x), ¢,(x) itself, and its first and second
derivatives.

o &

T T

T ~r
= -3¢ -0 =16 ¢

Figure 3. Plot for g=0.1 showing the indefinite integral of e,(x), e,(x) itself, and its first
and second derivatives. Each shows the same universal behaviour, except that the first
collision point ¢{™""* has already occurred for the indefinite integral of e,(x).

In summary, we define the set of functions for ‘" a positive integer:
dr
dxi‘
_ E nn—1)...(n—r+1)x"""
e []!
® al X
=y —
aer (=1} [n]!

) ) =—elx) (24a)

(245)
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where el (x) =e,(x). Note that ¢7(0)=1 but that the normalization for e(0), r#1,
is fixed by the definition (24a).

(i) e;"r)(x)=-[‘ dx; J"I dx,... I'P_ dx, e,(x,) +constant (25a)
_ § 1 xn-i-r
amp (AR r—1) ... (n+ 1) [n]!

. X (25b)

n=o (1)1 ]!

Note that as g — 1, e’(x) - exp(x). The constant(s) in (25) have been chosen for
simplicity so e‘“”(O) 0. Consequently, e57(x) -4exp(x) as g — 1 since the e series
begins with order x" terms. 4 different choice of the constants can be easzly made if
needed in applications. Each €57 (x) is entire and has an essential singularity at infinity.

3. Properties of zeros of ¢,(x) as g increases

At a g value of g} ~0.14, we find numerically that the first two zeros z; and z; of e,(x)
collide at x¥=:—2.48 and move off the negative real axis into the complex z plane. They
move off as (and remain) a complex conjugate pair. As g increases, this occurs again for
the associated-pair z; and z4, etc. This behaviour of e,(x) is quantitatively summarized in
the following tables and plots. We also find, from figure 3 and table 2, that a similar
collision process occurs for the indefinite integral and first two derivatives of e, (x).

Note that this similar behavior for x <0 of the zeros of the various €5™"(x) functions
is not so surprising. The analytic e, function has an infinite number of zeros for x <0
which asymptotically go as ,u,,. Each of the entire {™” functions is defined by an infinite
(convergent) alternating series, for x<0, and these series are related differentially. Thus,
between successive zeros of ¢J” there must be a smooth maximum (or minimum) which
is the location of a zero of ei'*". The simplest case is that there are no other relative
maxima (or minimum) between such successive zeros. For r>(, this intertwining of
the zeros of e(’) with those of e(’+ Y in association with ¢ I'7(:.:) — exp{x) as g —+ | makes
a common pairwise collision process the simplest option for the disappearance of the
real zeros as g—1 (for instance, this intertwining prevents the zeros from going off to
negative real infinity as g -» 1). We find no numerical evidence for any of the €{*”
functions that additional collisions among the zeros occur off the real axis in the compelx
2 plane. A remark is also due on the propemes e5""(x) in the negative x region near
the origin. The presence and location (in ¢* and x*) of the zeros, and also the sign of
5"(x) at its turning points, is affected by the choice of normalization, &5 (0) =0.

Table 2 lists the ¢* and x* values for the first five collision points for the four
functions shown in figure 3.

Recall that we Iabel the zeros of g,(x) by

Z,=p,+iv,. (26)

The real parts u, for the first 10 zeros are tabulated in table 3 and plotted in figure 4.
For these real parts, the plot of figure 5 shows the asymptotic £, versus the numerically
obtained p,. Previously in table 1 this comparison was made by listing the fractional
deviations. The magnitudes of the imaginary parts v, for the first 10 zeros are tabulated
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Table 2. ¢* and x* values for the first five collision points for. respectively, the indefinite
integral of e,(x), for g,(x) itself, and for its first and second derivatives. In the case of the
indefinite integral of e,(x), for n=1 (and 4) the (daggered) values shown are remarkable
in that u1 =g, (and p;=puy) for 20 significant figures.

n an x5
1 0.056T —4,57240
2 0.237 423 —11.3341
3 0.384 120 —17.7556
<4 0.488 124 —24.042 5
5 0.563 479 -30.2722
i 0.140 756 658 —2.479 81
2 0.388 476 941 —6.067 19
3 0.536 570 493 ~9.536 33
4 0.628 767 521 ~12.968 9
5 0.690 878 670 ~16.3851 B
1 0.251 977 —3.488 18 .
2 0.458 251 —6.994 55 . .
3 0.579 584 —104396
4 0.657 398 —13.8620
5 0.711 185 —17.273 8
1 0.338 992 . —4.42097
2 0.512 004 -7.905 90
3 0.614 215 —-11.3402
4 0.681 284 —14.756 6
5 0.728 579 —18.1648

in table 4 and plotted in figure 6. Note that in the g range shown in figure 6, the n=1
curve for |vy| in figure 6 crosses over two higher-» curves, and the n=3 curve for | v;
crosses over one higher-n curve. )

For completeness, figures 7 and 8 contain plots of the polar coordinates of the first
eight zeros. We define

pe=SIEFVE o | @D
&n=tan(| va/pal) (28)

‘where ¢, ==0 labels the negative real axis.

4. Properties of ¢,(z) in the complex z plane

We have numerically studied the properties of Re{e,(z)} and of Im{e,(z)} in the com-
plex z plane as g is varied. This behaviour is partially discernible from the discussion
of e,(x) in sections 2 and 3, and from Exton’s paper [1] on the properties of

cos,(y)=Re{e,(iy)} = i (-)”[—2% - (292}



C A Nelson and M G Gartley

3868

Y B 695°81- * F1sTei— * 6 ILL M- * 00 198°8— = L 29Ty~
* 8 1TI8I- N 0 LPRFI— * TOEP I~ * OF T68'L— * £T 680y —
* LRELLI- . £ 15T1— * [0 * LEELYL— * L8 9p6 -
-w FVOELI— * ELITVI- - y<ie'01— * 62 68F°L— * 0L9T8'¢{—
- L AT UFA R * 1 6¥6'CI— * £6IL01— * £80£C°L— - Pl ETL e~
* 06k 91— * 0 959tl— ¥ T EES01- * IS 161°L— * ¥t TE9E—
* CISE9[— * 1 054El- * g09e°01l— * 89 990°L— * 5 1667~
LSH8I— SEHPSI— * QENE1- * Y LEEOI— * 98 766'9— . TLBLYE—
t [SE61— Z 6909[— * 9 L96TI— * 0 68000~ . LE LP89— * (AN A} 4y
£ YELIE— 60T LI— * 6896°C)-- * 1£ 90676~ * 69 T9L'9~ * LO09E'E—
LS01Ze— L08YLI— (1102584 £l 0Z9peI- » LLTAR6— * #0 SpL'9—~ . +1 16€°€—
¥ 06 PE— S 06t61— LIeevi— 8870¢1~ * 0% ZZL6— * 80 £59°9— * 0T PeT'e—
19382~ 6 PES1T— 8 61E9I— 6 FLYTI- * £ PICT6— * 16 095'9— » 69 0FT'C—
LShLTE— [ 1214 14ad 6 600°81— 9ELTEI- * o6 66F°6— * [ 0Ly * $6 681°¢—
T 8ESSE— 1 Z80°9¢— L 890°61— R * T9 9ES°6— * 66 1ZF' 93— * T E91'E—
£ 9FT8E— 1214 LE— £ 6L070T— L1SSPI— ¥ 69¢°01—~ 26 L5878 . +1 08E°9— * 8¢ IPT°E—
3T AN oy 0000¢E- LAXA N A ¢ 00091- 08T I~ 95 78¢°3— * 09 18T 9~ * Ly v60'E—
0 06T Y5~ 89 L~ LIBLST— 1ELLLT~ S e~ o1 769'8— ¥ 0619 * GL 8hyE—
6 960790 — I 658 vp— 9 Pl 6T— DTe66l- D B 65 140°6— . It 6609~ * 9L £O0'E—
LLSL18— 0 90E'€s— £ ISLPE— | 665TI— 6 89LPI—~ 90 099'6~ * €8 IF0°9— . 80 656T—
6E6T0T— TrOIS9— SELY IP— L i¥09T— 1 M o—~ 1 L3701~ . €8 TH0'9— - 6T V16T
B&IGIT— £ 00 NL— 9 ISLPr— 8 C68°LT— 6 VRELI-- 6 198701 * 1Z L9079— » L €687~
LTreel— 9 20608 T9ps'6r— LOyE0E— 8 6LE°8I—~ 118€°11~ S0 8EL'9— 0F SoF°6— * 88 898°C—
E6E'ELT— 12§°201— £ 76909 S TER'CE— b BLC e~ 66551~ 80 05E°L— LCL6l's— » [2TT8T—
BLOLLE— 6BLTET— cloLsl— SosIer— 0 E0¥ b~ L9T0'%1- 0S p96'L— bs L80'S— * SEELLT~
000726 LOETOLT— 1 00996~ 1 016'26— 0 086'82—~ [ ELE'ST~ (£ 1998~ 79 860'S— * CE 1ZL°T~-
06’65 — PLI TP IR AR 0 €TE99— I 08L°PE—~ 8 BLTBI- ¥b 655°6— LLBITS— * 60 99 T—
£99'789— E€ET1PE— LI0LI— € ELEss- L 999'Tp~ € EEE [T~ LHY01— 68 85— * L8 609'Z—
GEI901— POy Eos— $18'8LT— LTl [ RYALES 6 L8Y'ST— A A R 96 96L°S—- * CL966T—
E6IPLI— 05T 18L— 8L GkE— 05095 1— 1 L0869~ Q05T e~ CSLOEl— YL 18T 9~ £ ey eIsT—
0¥ 680€E— 68 6TI— kS — 291°9TT~ 0 £19°96~ § HLE"GE— TL8591— EL 1#6'9— * L0 €8P T—
9Z'000%— G ETET— 0v0'006— a5 8pE— D00'SET—~ 9 L8TTE~ 6 05T0T— S0 068°L— - b SLY'T-
09E06L— 63 06T SEELHI— LoeLlb— 105798 T— 9 1pL88 ¥ 80— TEELT'8— - 8oLV T—
EOrTei— i 1899— L0 5E0i— £r1°6BE— 6L8"90T— 6THIEL~ 66086 OL SP1°6— £F LLOE— e 0T0'T—
FarIcE— Iin- POEISE— - oL ISE— - 121088 1eiri- 16 ¥6E°E—~ 69 Tht'1—

oz LF4 $z i " Sz L4 £z iz Iz

Ter 18 069°0=§P 01 153183U MOJ B[ ST I AUIYM Q)L 0= 1& 3da0xs ‘mos pitod UOISI[[OD B S1 1§ je] SH0USp
23pa 15| SYI U0 YSUMIEE U "1 MRIPSWLI 51} 0} PAISIUI SE INJBA SWEE I} SIOUIP UWINJOO B Ul {sHASE UY *(2)%2 Jo 50597 ] 184U 3U1 Jog “Af ¢ 3jqey,



Zeros of the g-analogue exponential function 3869
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Figure 4. Plot of the real parts of the first 10 zeros,  Figure 5. Plot showing the asymptotic expression,
I =M, +iv,, near their collision points. {f, for the real parts of the first 10 zeros versus the

numerically obtained real parts.

Table 4. [v,| for the first 10 zeros of ¢,(x).

q Zpa 34 Z56 Zra Z9,40
0.150 0.350 962 0 0 0 0

0.175 0.661 285 0 0 0 0

0.200 0.866 821 0 0 0 0

0.225 1.045 74 0 0 0 ]

0.250 1.219 67 0 0 0 0

0.275 1.397 33 0 0 0 0

0.300 1.581 51 0 ] 0 0

0.325 1,772 28 ¢ 0 0 0

0.350 1.969 42 0 0 0 0

0.375 2.173 56 0 0 ] 0

0.388 2.286 97 0 0 ] ]

0.400 2.386 06 0.570 553 0 0 0

0.425 2.608 73 1.031 16 0 0 ]

0.450 2.843 55 1.393 27 0 0 0

0.475 3.092 80 1.759 48 0 0 ]

0.550 3.35907 2.151 54 0 0 ]

0.525  3.64545 2.565 99 0 0 0

0.537 3.785 80 2.764 96 0. 0 0
0.550 3.95565 3.002 31 0.830 746 0 0

0.575 4,294 22 3.46558 1.501 30 ] 0

0.600 4.666 74 396218 2.15882 0 0

0.625 5.080 26 4,499 65 2.87479 0 ]

0.629 5.146 66 4,584 76 2.986 68 0 0

0.650 5,543 77 5.08757 3.639 39 1.380 73 0

0.675 6.068 97 573827 4.465 87 2.405 35 0

0.700 6.671 36 646306 5.371 50 3.536 62 1.05521
0.725 7.371 99 7.29897 6.37913 4.768 31 2.534 83
0.750 8.200 24 8.261 59 7.520 46 © 613458 417217
0.775 9,198 37 9.399 78 8.840 78 7.681 88 5.990 48
0.300 10,429 5 10.778 9 10.407 4 9479 17 8.064 44
0.825 119926 12,5009 12.3249 11.6340 10.497 8

0.850 140520 14,7347 14.766 5 14.306 9 13.923 4
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M5 w6 0T 08 09

q -
Figure 6. Plot of the magnitude of the imaginary parts of the first 10 zeros, z,= g, +iv,,
near their collision points. The subscript # labels the first (odd#) zero of the associate pair.

0.z

! T 7 T T T 4 T T LR, T T T T T T T T

0.1 0.2 R 0,5 e [ 0.8 08 6.1 0.2 03 04 05 0B BT 03 0.9
q- q-
Figure 7. Plot of the polar part, p,,=\/pﬁ+ vi, of Figure 8. Plot of the magnhitudes of the arguments

the first eight zeros near their collision points. of the first 10 zeros, ¢, =tan"'{|v./u,]). Note that
&, =0 specifies the negative real axis.

and
241

. . = y
sin { vy=Im{eiy)} = -y = 295
)=Im{e}= T () 2 (298)
as g is varied. Here y is a real variable. These functions are respectively even and odd
in y.
These g-analogue trigonometric functions are related by the g-derivative operation
where a="‘constant independent of x’

4 sin (ax) = a cos{ax) (30a)
d,x
<4 cos,(ax) =—a sing(ax) (306)

d,x
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where

/2.8 1/2
2 PN xi J;(gﬂ %) | (30¢)

They likewise satisfy the obvious (inverse) g-integration relation. Exton [1, 10] has
studied g-orthogonality properties they possess. For cos,(y), y =0, the asymptotic zeros
[1] and turning points are for n*=1,2, 3,.

43/4—::
I—¢q

—n—1/4

=

=c q

fp=—= %
(1—¢q)

‘and £5=0. For sin,(p) for y>0 they are for #*=1,2, 3, ... (75=0)

1/4-n

n 1/2
)

g
l1—¢g

1/4—n L
g=l (2" I) : (32)
I—g \2n+1 .

So for both g-trigonometric functions, as |v| increases the frequency of oscillation
decreases, and the amplitude is found to increase. Numerically we find for fixed ¢
that as n = oo the fractional deviations of (31)-(32) from the actual values decrease
monotonically. We have not found any numerical indication of possible non-real zeros
for cos,(z) or for sin,(z) for z complex. (If desired, the associated asymptotic polyno-
mials and ordinary higher derivatives and higher-indefinite integrals can be obtained
by the reader for these two functions).

To display the behaviour of e,(z) in the complex z plane, we set g=0.35, which is
after the collision point at qFf~0.14. Figure 9 shows the contour plot for Re{ey(z)},
and figure 10 that for Im{e,(z)}. The graphical notation in these two figures is explained
in their captions.

As g increases beyond 0.35 towards 1, each associated pair of zeros similarly collides
as discussed in section 3 and moves off into the complex z plane. This numerically
studied flow is consistent with the limiting behaviours as ¢ — 1,

A=

Re{e,(z)} — Re{exp(z)} =¢*cos y (33a)
Im{e,(z)} - Im{exp(z)} =¢€"sin y {33b)

displayed, for the reader’s convenience, in the top row of figure 11. Likewise, as ¢ = 0
it is evident how figures 9 and 10 change smoothly into the bottom row of figure 11
showing Re(1+2z)=1+x and Im(1l +z)=y in the same graphical notation.

If for x real we define the g-analogue hyberbolic functions

coshy(x)=1/2{e(x) +e,{—x)} = cos,(ix)

5 _— (34a)

R ARTT



3872 C A Nelson and M G Gartley

.0

1,751

2.5

6.2

1,004

=I5.0 =15

0.0

Figure 9. A ‘contour plot’ of Re{e,(z)} in the com-
plex z=x+iy plane for g=0.35, which is after the
first collision. The zeros of ¢,(z) are at the ‘crossed-
circle points’. The ‘solid circle points® along the imag-
inary axis show the zeros of cos,{ ¥) =Re{e,(iy)}. An
n® value labels each of these zeros, and also labels
the contour lines which shaw where Refe,(z}} =0
Heavy black borders display the regions where
Re{e,(z)} >0.

o
.00 -

=3 +

! W2

.15 . ’

rA]

625 1

N ]
£ b X

.00 T

=I5 0 1.5 0.0 1.8 5.0

Figure 10. A ‘contour plot’ of Im{e,(z)} int the com-
plex zplane for g=0.35. Here, the ‘solid circle points
along the imaginary axis show the zeros of sin ()=
Imle,(iy)}. An #* value labels the sing(y) zeros, and
also labels contour lines which show where
Im{e,(z)} =0. Heavy black borders show the regions
where Im{e, (=)} > 0. The broken contour lines show
the Re{e,(z)} =0 contours overlaid from figure 9.

- sinh,(x) =1/2{e,(x) +e,(—x}} = —i sin,(ix)

°z°:x"

n=13,.. [n—]l

(34b)

these even/odd functions are simply flatter counterparts of the usnal ones; for instance,

for x>0 they are both monotonic. Again

ad— cosh,(ax) =a sinh,{ax)

(35)

Ed— sinh,(ax) = a cosh,(ax).

In terms of figures 1 and 2 they have a simple interpretation, Recall the ¢,(x) bound
that |e,(x)] <e,(|x]), so the distance of e,(x} below this upper bound for x <0 is

de=e,(x]) —eg(x)

=—2 sinh,(x) x<0.

(364)

Likewise, the distance above this lower bound for x<0is

da=e (x) — {—e,|x])}
=2 cosh,(x).

(365)

So, in general this bound is 2 very poor envelope for ¢,(x).

5. The reciprocal function e, 2)

By the Hadamard-Weierstrass factorization theorem, [12] we can obtain the infinite
product representation for e,(x) for 0<g<1. We first use the expression for log([#],")
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{a) Aiy (8) y

L | L b iy 1
%
. 2 n=2
n=2
% 4 b
n=1
n
c
dn n=1
2 - T . B
4 Origin X 20ngine i g x
T
1 n=-1
L - -
2
B
- n=-1
n“=-2
T 7 T ]

-15.0 ~7.5 0.0 7.5 15.0 -15.0 -7.5 0.0 7.5 16.0
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a i iked | @ | Aty
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. | . _
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only zero n'=0 [
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T T T i
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Figure 11 Contour plots of the somplex function ¢,(z) for the limiting caes =1 (top row)
and for g=0 (bottom row) for comparispn with the previous two figures. The first column,
(a) and (), show Re{e,(z)} and the second column, (£) and (), show Im{e,(z)}. The
labelling is respectively as for figures 9 and 10.

preceding {145} to calculate the order p of the entire function e,(z). If the entire function
f(z) is of order p, then

Fz)=0{exp(r"*5)}

as Jz] =r — o0, for every £>0, but not for any £<0. Every polynomial is of order zero;
for order zero entire functiong

f(z) ~ Ofexp(r9)}
as |z] =r - oo, The standard formula for the order p(f) for f(z) =Z", ¢,z is [12]
nlogn

log [1/e,]

= lim sup 10BN
avoo - log(fnl))

ples(@)}=lim sup
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where by (145)
log(n], ) =n{(n—1)log p| +|log(1—g)|} +rx.

The remainder, which arises from the second ‘braces’ factor in {14b), is

= i log(I—¢")<0.

=i

Itis bounded by
[ra] <rllog(l—q)|.

Therefore, the order

. )
P{eq(z)} % {}Eﬂlo sup ﬁazo}

Hence, for every g, 0<<¢ <1, e,(z) is an entire function of order 0. For 0<g<1, e,2)

is not a polynomial, so it has infinitely many zeros. With z;, z2, . . . equal to the zeros
(listed in order of increasing magnitude), the product representation is [12] (since

e (0)=1)
e,(z)= nfj[! {1—=z/z,) g#1 (37)

where z,=u,+1iv, is the nth zero of e,(x). Therefore, the reciprocal function can also
be written as an infinite product

G'@=Ta-2/m" ¢l (3®)

where ¢;'(z)e,(x) =1. Also for all £>0, the series

E 1
n=1 iznls

converges, i.e. the exponent of convergence of the sequence {z,} is zero.
By multiplying out the product in (37), a sum rule for the zeros of g,(z) follows:

S (/my==1 gl 39)

=1

In a separate paper, we will report on the higher-order sum rules for the zeros which
follow from (37). (We have checked (39) numerically for ~0.1 <g<~0.3.)

Similarly, it is straightforward to directly show that the following functions are also
order zero for 0<g<1: &(2), e5"(z), cos,(z) and sing(z). Hence, since the usual
exp(z), cos(z) and sin(z) functions are of order 1, the order of these g-analogue entire
functions is discontinuous in the limit ¢ - 1.
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q=01

=T

=14 - 1
bl

Figure 12. Plot showing the universal behaviour of the reciprocal function e '(=) for
g<gqf (g?=0.14). The simple poles at z, with n=1, 2, ... are shown by vertical broken
lines.

Figure 12 shows the universal behaviour of ;' for x<0 and g<g¥ (gF=0.14). As
g is increased beyond g ~ (.14, the pair-associated simple poles of ¢ ' collide and move
off into the complex z plane, etc. The discussion and figures 9-11 of section 3 for the
properties of the zeros of e,(x) can be easily reinterpreted in terms of the poles of
€;'(z). For example, the “crossed-circle points’ in these figures now show the location
of the simple poles of ¢ '(z). For special g values, i.e. the collision points g*, &;'(z)
does have a single double pole at z=x} on the negative real axis. For ¢ <gf, the infinite
number of simple poles of ¢;'(z) lie only on the negative real axis.
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Appendix 1. Properties of E (7)

For completeness, we briefly compare some of the analogous results [i1,2] for the
alternative realization [13, 14) of the g-boson commutation relations in which b and &%
satisfy

bbbt —gqbb=1.

where 0<g<oo. Consequently the remaining ‘type o’ realization listed in [13] is no
different from this “type &’ realization. “Type @’ is only a relabelling ¢ — 1/g with b — a,
bt > atso

aet—g gt a=1.
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The g-cs ate defined [14] by

* =
,=1{E, 231=1/2
12> { (2] )} 'Erl\/m

for 0<g<1; [n], is defined below. The g-boson transformation [13] from the upper
equation in (4) to above realization is b=¢""*a, b =a*¢"’*. The associated g-boson
completeness relation [14] is

' fdﬂ(z)fz>JJ<ZI=1

[72>

with

dp(2)=(1/2m)E(|2)) Ey/o(—qlz)*) d 2> 46 0<g<i
and {z)*< ;. Here also it is the E,,(—4]z|*)= {E,(g|2{*)} " factor that is important in
the measure.

Figures 13 and 14 show the plots, respectively for g2 1 and 0<g<1, of Jackson’s
g-exponential function [11]

<} 1 —_
Efxy= % X"/rl! (nl,= .
n=Q I -gq
For g1, this series converges uniformly and absolutely for all finite z. There is an
essential singularity at infinity. The oscillations increase in amplitude as x — (—o0).
The properties of E,(x) for 4> 1 appear qualitatively the same as those of e (x) for
g less than the first collision point at g¥ ~0.14. Since e,(x) is symmetric under g 1/g,
the just cited properties of e (x) reported in the text also hold for q>{1/q¥} where
1/qt~7.1.
However, the zeros of E,(x) for g>1 do not collide pairwise as g —» 1 but instead
move off to infinity so that E,(z) - exp(z) as g — 1. Also, as for ¢,(z), wheng—~w a

28 ] 1.0
I
!
I
I

q=10 !

1 1 4]
1
1
:-
f
1
I

5 i 0.0

4 / ER
q q
B4 4.5
=15 -1.6
1] [] L]
-l2e ) 50 30 ] n 2 o] T ] 20
X D

Figure 13. Plot showing the universal behaviour of Figure 14. Plot showing the universal behaviour of
Jackson's E(z) for g>1. The broken curve for x  E(x) for g<1. The broken curve for x negative is
positive is exp(x). The zeros are exactly at exp(x). The simple poles at ¢™"/(1—g) with n=
pE=~g"{g—1); n=1,2,.... S0 as g—1 these 1,2,... are shown by vertical broken lines.

zeros move off to negative infinity,
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single zero remains at z=—1 with E,(z) - 1+z. The zeros of E,(x) are at [11]

pE=g"/(1—-q)

forn=1, 2, .. .. This follows (C Zachos, unpublished) easily from the recursion relation

Ey(x)=[1+x(1—¢")] Ex/q).

Iteration gives the infinite product representation
R
Ey(x)=lim { Il (1+x(1 —q"‘)q")}Eq(x/q“)

o
=11 (1+x(1-¢")g")
since for fixed x,g>1, E,(x/q¢") = E0)=1 as R— co. Note that the sum rule
20 (1/uE)=—1 then follows easily since the s form a geometric series.

A simple way {C Zachos, unpublished) to obtain the recursion relation is to solve
Jackson’s g-derivative result D (E,) = E (x)} = { E(gx) — E,(x)}/{gx — g} for E,(gx), and
then let xg — x. So, such recursion relations actually just re-express the term-by-term,
power series agreement that shows D (E,) equals E,. .

The analogous recursion relation for e,(x) has two terms:

e(x)=e,(q'x) +x(1-q e g™ *x).

However, unlike for E,(x), this recursion relation does not simply yield a formula for
the zeros of ey (x). '

It is important that e (x) for ¢>{1/4f} has ‘twice’ as many zeros as E,(z). This is
easily seen, for by (16) the zeros of e,(x) are asymptotically at g5=—¢""""2/(1—¢)
when 0 <g<1. For comparison with the zeros of E{x) which are at uF for g>1, we
therefore substitute ¢ — 1/¢ in A7 and find that for n=1,2, ...

qﬂ
(g—1)
=p"_

‘We use the notation ¢ — 1 /g on the left-hand side of this equation to denote the explicit
substitution which is required (because the text considers 0 <¢<1i and not 1 <g< )
to compare the zeros of the text’s e (z) functions with this appendices’ zeros for the
E,(z) functions. This same notation is used below.

For ¢> 1, the E,(x) zeros, or equivalently the E'(x) poles, do not collide because
their collision partners simply do not exist. This observation is relevant to the physical
significance of the different ¢-boson realizations.

For 0<g<1, the series for the meromorphic function E{x) converges uniformly
and absolutely for |x|<(1—g)”', but diverges otherwise. However, for any s,
E,(x)E ;{—x)=1.80for g=1/swiths> 1, Ej(x) =1/E,,,(—x). Thus, for0 <g<1 figure
14 follows with simple poles for E (x) at ¢ /(1 —¢g) for n=0, 1, ... . Since the series
represeniation diverges at 1/{1 —¢), one must analytically continue the function for x
larger than this point. Therefore, it is not paradoxical that E,(x) <0 for x>0 and g <1.
For g <1, E,(x)—~exp(x) as g— 1, and E (x)-+(1—x)™" as g—0. For comparison with
e7'(z) of figure 12 in section 6, note that figure 14 can be interpreted as a plot of
E'(x) except as plotted for the arguments §=1/g and %=-x.

g>{1/4%}

lalsn—l]qﬂl/q= -
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For ¢> 1, the complex z plane plots for Re{£,(z)} and for Im{£,(z)} are qualita-
tively the same as'the analogous ones for e,(z) for g > {1 /¢¥} where 1 /¢f ~7.1. However,
there are in general only half as many trajectories for the zeros of E,(z) as there are
for e,(x). This was shown above for zeros on the real axis. For along the imaginary
axis, we define [15]

Cos,(¥) =Re{E(i»)}

n yzn
=3 (Y

Sin(y) =Im{E, (i)}

—Z( ) e

n=0 [2?1""1]_;

2n+l

For these functions there is a matrix recursion relation:

(Cosq(y))z( 1 -(l—q")y)(Cosq(y/q))
Sing(3)/ \(1—-¢"")y i Sing(y/q)
However, for g> 1 these functions do have asymptotically half as many zeros as their

respective counterparts cos,(y) and sin () of (29). In particular, the relations between
the respective asymptotic formulae for their zeros for y 20 are

In—~t/2
Aon—3rdg1/e= ) =I5 g»1
and (#;=0)
I
Bin—1salg—1/9= 1 =fix g»1.

For the rth derivative of E,,(x), g<1,
. d
E{(x)= E 1a(%)

par=1)...(n—r+ l)lf,_,,
[n),!

we find the asymptotic formula for the zeros (r=1; n=1,2,...)

x(r&.ﬁfﬁi’(ﬂi}
" l—-g +1

which can be improved by solving (p=¢""*)

=y q1/2ﬂ(n-

n=1
Pt Y T mt ) mtr—1) L (et 1)Y"=0

me=]

where the improved

=(n+r—1)
x = _g Jrey

l—g
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Similarly, for the rth indefinite integral

o (t—1)/2 xn-!—r
EPw=Y 7
amo B (R+r—=1) ., . (r+1) [n] !
—(—1 -
x}f—r)=q y) ¥ _htr
l—g R
1 n—1 2mm—2n+ 1)
~+'7 L4 y'=0.

vl s {m+Erm+r=1)...(m+1)

Lastly, as in section 5, it is straightforward to directly show for ¢> 1 that the following
entire functions are also order zero: E (z), ES(z), E{™(z), Cos,(z) and Sin(2).

Appendix 2. Auxiliary g-boson operators &, @
Auxiliary g-boson operators were introduced in [7]. For k fixed, we set j=j+k and
require
U1y ik
akU>E{D] =1 L
Zero ifi<k
and
Ep=E+10"45+ 0 ifj=k.
So d|k>=0. Then in the |n}, basis, on the subspace spanned by {4+, j=0,
Gy = [Ne+1]
Fedp =[N}
where Ny|j+k>=/j+k>. Also, [Ny, @ 1=, [Nk, d]=—a.. Thus, for each distinct
k, &. and &; are defined on an infinite-dimensional subspace |k +/3, />0, and satisfy a

quantum algebra .

=172 &; = FRL/2

e —
ety — g dx=q

on this subspace.

Appendix 3. Other results about ¢,(z)

Contributions to e,(x) and e,(x) from neglected terms

For e,(x), the contributions from the neglected terms at the asymptotic zero values,
x=fi,, can be systematically evaluated. These corrections arise from the *{} - I’
approximation to [#]! in (144) and from the neglected r =2 terms in (175):

e(fi)=4"—q+0()
() =g+ 0(g)
es(fin) =—g+0(g?) n23.
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Similarly, for the first derivative ¢j(x), we find
eF) =3¢+ 0@
ey(£2)=5qy*+O0(¢*?)
el(7)=74"%"+0(g")
ey () =4"y(9y* +8) + O(g"%)

T =20y T O 125

where y,& —n/(n+1) is the solution to the associated asymptotic polynomial (20).

Praperties of the approximate series e (x)

The approximate series €;(x), given in (15), has been introduced as a useful approxima-
tion to e,(x) for g« 1. As g >0, bothg;and ¢} —z+1, butas ¢ — 1, ef = 1 and not to
the usual exp(z). Nevertheless, we do find numerically that the exact zeros of the
approximate series e; (x) also collide in pairs as g increases above g%;~0.095 in a
similar manner to what occurs for the g-exponential function itself, e,(x). For compari-
son with the (¢*, x*} values for e,(x} which are listed in table 2, for el (x) we find the
first five collision points are (gki, x%y=(0.0956, —2.566), (0.2677, —8.263),
(0.3977, —14.73), (0.4917, —21.49) and (0.5614, —28.41). So the collisions occur at
somewhat smaller ¢* and x* values for ¢} (x) than for g,(x).

For g«1, in the text following (15), the geometric mean |%| =p'~*(1—¢g)~" of the
interval associated with the term ‘c,X” in the ef(x) series is introduced. Note that at
the geometric mean

cr-nii!r—n=p-r2+n3

gives the value of the other terms of the series (for n negative and positive). Thus, ¢, 5"
dominates the sum in magnitude for &5(x) when

le I 1+eZ| +. .| Z ™ e R7 . L
or

pwr3>2{p-ﬂ+l+P—rz+4+p—ﬂ+9+. . }
or

1>2{p+p*+p"+. .. +p"+. . ]

This last inequality holds when p<0.45593317..., ¢<0.043 212024, ... Note that
in the p™ and following other inequality the expressions only go back to =1, but
go from ¢, on to infinity. So for ¢ <0.0432, the ¢, % term does, indeed, dominate the
sum in magnitude for the e7(x) series.
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