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J. Phys. A: Math. Gen. 27 (1994) 3857-3881. Printed in the UK 

On the zeros of the q-analogue exponential function 

Charles A Nelson and Michael G Gartley 
Department of Physics, State University of New York at Binghamton, Binghamton, 
NY 13902-6000, USA 

Received 12 July 1993, in final form 14 December 1993 

Abstract. An asymptotic formula for the zeros, 2". of the entire function e&) for q a l  is 
obtained. As q increases above the first collision poinl at qrxO.14, these zeros collide in 
pairs and then move off into the complex z plane. They move offas (and remain) a complex 
conjugate pair. The zeros of the ordinary higher derivatives and of the ordinary indefinite 
integrals of e&) vary with q in a similar manner. Properties of e&) for z complex and 
for arbitrary q are deduced. For O<q<l. e&) is an entire function of order 0. By the 
Hadamard-Weierstrass factorization theorem, infinite product representations are obtained 
for e&) and for the reciprocal function e;'(=). If q # l ,  the zeros satisfy the sum rule 
ER-, (1/zJ=-i. 

1. Motivation 

The q-exponential function [ 1,2], which occurs [3,4] in the study of quantum algebras, 
is defined by 

where [n] ! = [n] [n - I] . . . [I], [O] ! = 1. The 'bracket # for q real and positive is defined 
bY 

and is called the 'q-deformation' of n. It, and e&), are invariant under qc)  l/q. So, 
unless noted otherwise, we take O < q <  1 in this paper. 

As q + 1, e&) --t exp(z) and as q + 0, e,(z) - 1 +z. From (1), we see that e,(.) is 
an entire function (a transcendental entire function) and le&)[ <eq(lzl)<exp(lrl). So 
the series representation converges uniformly and absolutely for all finite z independent 
of the value of q. e&) has an essential singularity at infinity. For x>O, e&) is positive. 
But for x<O, we have an alternating series. For x i 0  and q <  -0.14 there is a universal 
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Figure 1. Plot showing universal behaviour of e&) 
forq<q:(q:rsO.tQ).ThebmkPncurveforxpositive 
is exp(x). 

Figure 2. An enlargement of the preceding figure, 
e&) for q-0.1, in the small negativex region. ?he 
curve for q=O.2 showsthedip that occurs in e&) > O  
after a collision of an associated-pair of zeros. At 
q:s0.14 the first two zeros, zI and rr, collide and 
move off the negative real axis into the complex E 

plane. They move off as (and remain) a complex 
conjugate pair. 

behaviour independent of the value of q consisting of increasing amplitude oscillations 
of decreasing frequency as x (-00) (see figures 1 and 2). 

However, not much is known quantitatively about eq(z). In particular, little is known 
about its zeros. These zeros and the properties of eq(x) for x negative appear promin- 
ently in a completeness relation [5,9] for the q-analogue coherent states (cs) 

Thus, in quantum field theory the properties of e&) are also important for the various 
q-analogue diagonal operator representations [6,7] analogous to the P-, Q-, and W- 
representations in quantum optics. 

In (3), the q-analogue cs, lz),, are eigenstates of the q-boson annihilation operator 
where z is a complex number, a l ~ ) ~ = z I z ) ~ ,  with 

(4) aa+ - g t l / 2 a + a =  q 7 N / 2  

and [N, a’] =a+, [N,  a] = -a. Then, 

where N(z) =eq(lz13-’/2. For the measure 
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the first term in (3) gives [5 ,6 ]  

with x=lzlz. In (7) the integral over 1zI2 is a q-integration over the interval from zero 
to some &>O (ifixed) where -(=-(I is the largest zero of e,(z), -C2 the next largest, 
etc. 

Note that e,(x) in the negative x region is the significant factor in the measure. The 
other factor e,(lz12)= {N(z)}-*, is required only to cancel the normalization factor of 

The second term [7] in (3) also depends on the (i fixed) zero Ti. The set of q-discrefe 
auxiliary states li), are also eigenstates of an tik annihilation operator (see appendix 

I Z h .  

2) 

&I&)= (q1’4ik)1&> (8) 

where 

[ik+xk= @”Ci (10) 
with k=O, 1,. . .; Mk=e,(q”2xk)-”2. So for the discrete measure 

In (1 la) and (llb), e, in the negative x region also appears. The resolution of unity is 
satisfied since [5,7] 

is the q-analogue of EuIer’s formula for 
In the completeness relation (3), the separate contributions from the q-bosons and 

from the auxiliary q-bosons depend on the choice made for the ith zero c,, of e&). It 
is true that when both terms are combined, this dependence on ci cancels out. Neverthe- 
less, for the q-boson term alone this ti dependence is very important mathematically, 
by (IZ), and most likely is also important physically for q values suficiently different 
from 1. 

Note that the upper integration limit in (12) need not be the absolute value of a 
zero of e,. However, for ti as the upper integration limit, the standard Euler identity 
follows as q + 1. 

In complex analysis, the distribution of the zeros of an entire function is connected 
with the growth of the entire function. This is another reason for a more quantitative 
study of the zeros of e&). 

Lastly, the e,(.) function frequently appears in the current literature on quantum 
algebras. Knowledge of the simple properties of e,, and of the inverse function 
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e;'(z), for z complex and for arbitrary q should be useful to formal investigations, to 
applications of q-symmetries, and to other applications of the e&) function in physics. 

In section 2 we study the properties of the zeros of e,(x) for q<qr  (qreO.14). For 
q<< 1, asymptotic formulae for these zeros, and for those of its derivatives and indefinite 
integrals are obtained. Section 3 examines the pairwise collision of associated zeros that 
is found to occur as q increases above q?%0.14. Section 4 then studies the properties 
of the complex function e&) for z complex and for arbitrary q. In section 5, we show 
that e&) is an order zero entire function and obtain infinite product representations 
for e,(z) and for the reciprocal function e;'(z). We show that the zeros of e, satisfy 
the sum rule C.", I ( I  /zn) = -1 for q # 1. The properties of Jackson's E&) function are 
discussed in appendix 1 since it occurs for a simple alternative realization of the q- 
boson commutation relations. In appendix 2 we briefly review the properties of the 
auxiliary q-boson operators ?& and 8;. Appendix 3 contains some additional results 
about e&). 

C A  Nelson and M G Gartley 

2. Properties of the zeros of e&) for q < -0.14 

Since e&) is defined for x<O by a convergent alternating series with terms which 
monotonically decrease in absolute value (after sufficiently many terms), we can reliably 
analyse its behaviour numerically since the error in truncating the series is less than the 
absolute value of the first term dropped, provided the absolute values of the terms have 
already started to monotonically decrease. 

However, before reporting numerical results, we will analytically obtain an asymp- 
totic estimate of the values of the zeros of eq(x) which is extremely accurate when q<< 1. 
Exton has shown [ 1,2] that a less explicit procedure gives exactly the zeros of Jackson's 
q-exponential function [ I O ]  E&) for q > l ,  and that it gives a good estimate for the 
zeros of cos,(y) zRe{e,(iy)} and of sin,(y)=Im(e,(iy)}. The method we propose in 
this paper gives the same estimates as Exton's in these three instances. 

The series representation for the q-exponential function is 

When q is small or n large, the deformation of n can be approximated, 
q'l-"'/2 'I+"'/2 q'l-"'/z 

1-q 1-q 
[nlq = q =- (134 

OI 

where 
p'q1/4 (positive fourth root). (134 

We use this approximation to estimate [nip! and log([n],!) for n 2 1 : 

so 
[O]!-l 
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and 

1 
[I]! =- ( 1-41 

1-9 

[2]!=- p-2 { l -q -$+d}  
(1 -4)n 

where the O(q3) term vanishes in the last braces for n23. Likewise, 

log([n],!) = -n( (n - l)logp+ log( 1 -q)}  +log{ (I -q)( 1 - 2) . . . (1 - 4“)) 
so 

log([n],!) = -n{(n - 1) logp+log( 1 - q)}  +log( 1 - q-$+O(q4)} n 2 3 .  (146) 

As in applications of Stirling’s formulae, for q small or n large we will set the ‘brace’ 
equal to ‘1’ in (14a), or set the second ‘brace’ equal to ‘1’ in (14b), to obtain a simpler 
‘approximate series’ or expression for analytic analysis. For q small (or n large) such 
an ‘approximate series’ gives a good estimate of the behaviour of the ‘exact series’ of 
interest. When desired, corrections from the brace factors can he systematically included 
(see appendix 3). 

For the q-exponential function, the associated ‘approximate series’ e,“(.) is 
m 

e,(x) -+ e,“(.) = I + 1 pP-‘(l - q)’x’. (15) 
r =  I 

Note that the magnitude of the ‘eh term’ equals the magnitude of the ‘ ( r -  1)st term’ 
when 

p2-” . 1x1 =-. 
1-4 

So ‘c,x” is the largest term in magnitude when 

P Z < l x [  <-. P-* 
1-4 1-4 

In fact (see appendix 3) at the geometric mean of this interval 

P-2r I?[ =p - 
1-4 

the ‘c,x” term dominates the sum in magnitude for &x) when q10.043212. . . . Then 
the sign of e;(-l?[) equals (-)’. Thus, e,“(.) has infinitely many real negative zeros 
when qeO.043212.. . . 

So to obtain an asymptotic estimate for the location of the nth zero of e,@) we 
assign x a value such that the magnitude of the ‘nth term’ in (1 5) equals the magnitude 
of the ‘(n- I)st term’. Thereby, the asymptotic formula for p ;  is 

1 1  - n v 2  
n = l , 2 ,  .... Y fl,p -- 

1-!I 
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We denote such asymptotic values by a tilde. For each such asymptotic estimate for 
the zeros of a specific function which is given in this paper, we numerically find that 
for n sufficiently large the associated fractional deviation is monotonic in n, with q fixed 

Actually, for e,(x) there is a greater cancellation occurring than is suggested by the 
above reasoning. In fact, for x=p: the sum of the '1' plus the first rn=2n-1 terms in 
the approximate series e$(x), see (15), vanishes. The remaining terms beyond the r.th 
are negligible. In particular, if we use (16) to rescale x. 

C A  Nelson and M G Gartky 

(qm0.1 to 0.001). 

then 

We call 

the 'asymptotic polynomial' for e&). It vanishes for y,= -1 (independent of n), so by 
( 1 7 ~ )  the 'improved asymptotic formula' for the zeros of eq(x) is also (16). 

For some of the other functions (e.g. the derivatives and indefinite integrals of e&)) 
considered in this paper, 'improved asymptotic values' can be obtained by solving the 
associated 'asymptotic polynomial' for the q-analogue function of interest. For y =  -1, 
the 'asymptotic polynomial' automatically vanishes for the following functions: eq(x), 
cos9( y) =Re{e,(iy)}, sin,( y) =Im{e,(iy)} ; and for q >  1 for E,@), Cos,( y), and Sin,( y), 
which are discussed in appendix 1. 

Table 1 shows that the fractional deviation of p. from the actual real parts, pn, is 
arbitrarily small as q 4 0 for the first eight zeros, 

z, =pn + i v, 
of e&). By (16), e&) has an infinite number of zeros when q # O  or 1. By ( I Q ,  for 
fixed q#O or 1, the separation between adjacent zeros increases as n increases since 

,&+I -F.=q-'qFn-Fn-l). ( 1 8 4  

So, the frequency of oscillation of e,(x) decreases as x 4 (-00). Since 

Pnc1llZ,=IIJq (W 

the zeros increase asymptotically in geometric proportion. 
Similarly, for the turning points of e&), we find for n= 1,2,3, . . . that 
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or 
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Equivalently, fz are the asymptotic estimates for the zeros of the ordinary first deriva- 
tive e;(x)=de,(x)/dx. An improved estimate for the nth zero is obtained by solving 
the associated asymptotic polynomial: 

The asymptotic formula for the inflection points, i.e. for the zeros of the second deriva- 
tive et(x) =d2e,(x)/d2x, is 

For the rth derivative of e,(x), the asymptotic formula for the zeros is ( r>1;  n= 
1,2 , .  . .) 

The improved estimate is 

with the asymptotic polynomial 
2n-1 

r ! +  pm(,n-2n+l) (m+r) (m+r- l )  ... (m+l)$"=O. 
m- I 

In the same manner, we consider the indefinite integral 

x2 x3 

2[1]! 3[2]! 
=x+-+-+. . . 

a Y+I 

.-0(n+l)b1! = c  
where the constant has been chosen so ei-')(O)=O. The asymptotic 'zeros' of ei-')(x) 
are at i&- ' )=O and for n= 1 ,2 , .  . . at 
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For the rth indefinite integral of e&), the asymptotic formula for the zeros is ( r a l ;  
n = l , 2 ,  ...) 

The improved estimate is 

with the asymptotic polynomial 

y"=O. d""" -% + I )  
1 a-I 

-+ r !  ,,,=, c ( m + r ) ( m + r - I ) .  . . (m+l)  

Figure 3 displays the indefinite integral of e&), e&) itself, and its first and second 
derivatives. 

Figure 3. Plot for q=O.I showing the indefinite integIal Of e&), e&) itself, and its first 
and second derivatives. Each shows the same universal behaviour, except that the first 
collision point &')* has already occurred for the indefinite integral of e&). 

In summary, we define the set of functions for 'r' a positive integer: 

n(n- 1) . . . ( n - r +  l)x'-' 

tnl ! 
= c  

n=r 
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where eF'(x)=e,(x). Note that e:'(O)=l but that the normalization for eF'(O), r f  1, 
is fixed by the delinition (240). 

C A  Nelson and M G Gartley 

(ii) e;-')(x) = jx dx, 1" dx,. . . ["-' dx,e,(x,) +constant (254  

x"+' 1 
n - o ( n + r ) ( n + r - l ) .  . . ( n + l )  [n]!  

m n! X" 
n-O ( n + r ) !  [n]! '  

-~ m = c  
(256) = -- 

Note that as q 4 1, e$'(x) -exp(x). The constant(s) in (25) have been chosen for 
simplicity so e;-"(O)=O. Consequently, e:-')(x) jlexp(x) as q -+ 1 since the e;-" series 
begins with order x' terms. A direrent choice of the constants can be eerily made if 
needed in applications. Each e p ) ( x )  is entire and has an essential singularity at infinity. 

3. Properties of zeros of e&) as q increases 

At a q value of qTzO.14, we find numerically that the first two zeros z ,  and z2 of e,(x) 
collide at x: g -2.48 and move off the negative real axis into the complex z plane. They 
move off as (and remain) a complex conjugate pair. As q increases, this occurs again for 
the associated-pair z3 and z4, etc. This behaviour ofe,(x) is quantitatively summarized in 
the following tables and plots. We also find, from figure 3 and table 2, that a similar 
collision process occurs for the indefinite integral and first two derivatives of e&). 

Note that this similar behavior for x<O of the zeros of the various er'(x) functions 
is not so surprising. The analytic e, function has an infinite number of zeros for X C O  
which asymptotically go asp.. Each of the entire functions is defined by an infinite 
(convergent) alternating series, for x i  0, and these series are related differentially. Thus, 
between successive zeros of e$) there must be a smooth maximum (or minimum) which 
is the location of a zero of e:"'. The simplest case is that there are no other relative 
maxima (or minimum) between such successive zeros. For r>O, this intertwining of 
the zeros of er) with those of e$+') in association with e$'(x) 4 exp(x) as q + 1 makes 
a common painvise collision process the simplest option for the disappearance of the 
real zeros as q 4  1 (for instance, this intertwining prevents the zeros from going off to 
negative real infinity as q 4 1). We find no numerical evidence for any of the e p )  
functions that additional collisions among the zeros occur off the real axis in the compelx 
.z plane. A remark is also due on the properties e$-r)(x) in the negative x region near 
the origin. The presence and location (in q* and x*) of the zeros, and also the sign of 

a t  its turning points, is affected by the choice of normalization, e;-')(O) = O .  
Table 2 lists the q* and x* values for the first five collision points for the four 

Recall that we label the zeros of e,(x) by 
functions shown in figure 3. 

z. = p,+ iv.. (26) 
The real parts pn for the first 10 zeros are tabulated in table 3 and plotted'in figure 4. 
For these real parts, the plot of figure 5 shows the asymptotic p. versus the numerically 
obtained p.. Previously in table 1 this comparison was made by listing the fractional 
deviations. The magnitudes of the imaginary parts v, for the first 10 zeros are tabulated 
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Table 2. q* and x* values for the first five collision points for. respectively, the indefinite 
integral of e&), for e&) itself, and for its first and second derivatives. In the case of the 
indefinite integral of e&'), for n= I (and 4) the (daggered) values shown are remarkable 
in that p, = p 2  (and p , = p d  for 20 significant figures. 

n 4.' x; 

1 0.0567 -4.572 40 
2 0.237 423 -11.334 I 
3 0.384 I20 -17.7556 
4 0.488 l24t -24.042 5 
5 0.563 479 -30.272 2 

1 0.140 756 658 -2.479 81 
2 0.388 476 941 -6.067 19 
3 0.536 570 493 -9.536 38 
4 0.628 767 521 -12.9689 
5 0.690 878 670 -16.385 I 

1 0.251 977 -3.488 18 
2 0.458 251 -6.994 55 
3 0.579 584 -10.4396 
4 0.657 398 -13.8620 
5 0.711 185 -17.273 8 

1 0.338 992 . -4.42097 
2 0.512 004 -7.905 90 
3 0.614215 - I  1.340 2 
4 0.681 284 -14.7566 
5 0.728 579 -18.1648 

in table 4 and plotted in figure 6. Note that in the q range shown in figure 6, the n= 1 
curve for lvll in figure 6'crosses over two higher-n curves, and the n = 3  curve for I vj[ 
crosses over one higher-n curve. 

For completeness, figures 7 and 8 contain plots of the polar coordinates of the first 
eight zeros. We define 

. .  

'where 4"=0 labels the negative real axis. 

4. Properties of e&) in the complex z plane 

We have numerically studied the properties of Re{e,(z)} and of Im{e,(z)} in the com- 
plex z plane as q is varied. This behaviour is partially discernible from the discussion 
of e,(x) in sections 2 and 3, and from Exton's paper [I] on the properties of 

J" 
n - ~  PnI!  
m 

cos,(y)=Re{e,(iy)}= (-y- 
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f . 
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0 

0.1 0.2 0 3  0.4 0 .5  0 6  0 1  0.1 

Figure 4. Plot of the real parts of the first IO zeros, 
zn=pn+iv, ,  near their collision points. 

FIgure 5. Plot showing the asymptotic expression, 
L, for the real parts of the first 10 zeros versus the 
numerically obtained real parts. 

Table 4. 1v.I for the first 10 zeros of e&). 

4 21.2 L1.4 21.6 Z7.Q 9 . 1 0  

0.150 0.350 962 0 
0.175 0.661 285 
0.200 
0.225 
0.250 
0.275 
0.300 
0.325 
0.350 
0.375 
0.388 
0.400 
0.425 
0.450 
0.475 
0.550 
0.525, 
0.537 
0.550 
0.575 
0.6W 
0.625 
0.629 
0.650 
0.675 
0.700 
0.725 
0.750 
0.775 
0.800 
0.825 
0.850 

0.866 821 

1.219 67 
1.397 33 
1.581 51 
1.77228 
1.969 42 
2.173 56 
2.286 97~ 
2.386 06 
2.608 73 
2.843 55 
3.092 80 
3.359 07 
3.645 45 
3.785 80 
3.955 65 
4.294 22 
4.666 74 
5.080 26 
5.146 66 
5.543 77 
6.068 97 
6.671 36 
7.371 99 
8.200 24 
9.198 37 
10.429 5 
11.992 6 
14.052 0 

I .n45 74 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.570 555 
1.031 16 
1.39327 
1.759 48 
2.151 54 
2.565 99 
2.764 96 
3.002 31 
3.465 58 
3.962 18 
4.499 65 
4.584 76 
5.087 57 
5.738 27 
6.468 06 
7.298 97 
8.26 I 59 
9.399 78 
10.778 9 
12.5009 
14.734 7 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1.501 30 
2.15882 
2.874 79 
2.986 68 
3.639 39 
4.465 87 
5.371 50 
6.379 13 
7.520 46 
8.840 78 

0.830 -146 

10.407 4 
12.324 9 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
1.380 73 
2.405 35 
3.536 62 
4.768 31 
6.13458 
7.681 88 
9.479 17 

n 

11.6340 
14.766 5 14.306 9 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1.05521 
2.534 83 
4.172 17 
5.990 48 
8.064 44 
10.497 8 
13.923 4 
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IS , 

Figure 6. Plolof the magnitude of the imaginary parts ofthe first 10 zeros, z,-pn+iv, ,  
near their collision points. The subscript n labels the first (odd#) zero of the associate pair. 

0 i 
q-, 

t.1 0.2 0.8 0.4 b,S  0.6 0.1 0.8 0.9 

Figure 7. Plot of the polar part, p.=,/p:+v:, of 
the first eight zeros near their collision points. 

Figure 8. Plot o f  the magnitudes of the arguments 
of the first 10 zeros, +n=tan-'(lvJpml). Note that 
r$"=O specifies the negative real axis. 

and 

Y"+' m 
sin,(y)-h{e,(iy)}= (-)"- 

" - 0  [ & + I ] !  

as q is varied. Here y is a real variable. These functions are respectively even and odd 
in y .  

These q-analogue trigonometric functions are related by the q-derivative operation 
where a='constant independent of x' 

d - cosq(ax) =-a sin,(ax) 
d,x 
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where 

They likewise satisfy the obvious (inverse) q-integration relation. Exton 11, IO] has 
studied q-orthogonality properties they possess. For cos&), y 2 0 ,  the asymptotic zeros 
[l]  and turning points are for nc= 1,2, 3,. . . 

So for both q-trigonometric functions, as lyl increases the frequency of oscillation 
decreases, and the amplitude is found to increase. Numerically we find for fixed q 
that as n + m the fractional deviations of (31)-(32) from the actual values decrease 
monotonically. We have not found any numerical indication of possible non-real zeros 
for cos&) or for sin&) for z complex. (If desired, the associated asymptotic polyno- 
mials and ordinary higher derivatives and higher-indefinite integrals can be obtained 
by the reader for these two functions). 

To display the behaviour of e&) in the complex z plane, we set q=O.35, which is 
after the collision point at qf=O.lA Figure 9 shows the contour plot for Re{.,(.)}, 
and figure 10 that for Im{e,(z)). The graphical notation in these two figures is explained 
in their captions. 

As q increases beyond 0.35 towards 1, each associated pair of zeros similarly collides 
as discussed in section 3 and moves off into the complex z plane. This numerically 
studied flow is consistent with the limiting behaviours as q + 1, 

Re{e,(r)} +Re{exp(z)} =excosy (334 

Im{e&)} + Im{exp(z)} =ex sin y (336) 

displayed, for the reader’s convenience, in the top row of figure 11. Likewise, as q + 0 
it is evident how figures 9 and 10 change smoothly into the bottom row of figure 11 
showing Re(1 + z ) =  1 +x and Im(1 + z ) = y  in the same graphical notation. 

If for x real we define the q-analogue hyberbolic functions 

cosh,(x) E l/Z{e,(x) +eg(-x)) = cos,(ix) 
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Figure 9. A 'contour plot' of Re(e,(r)] in the com- 
plex ;-xfiy plane for q=0.35, which is after the 
first collision. The zeros of e,,@) are at the 'crossed- 
circle points'. The 'solid circle points' along the imag- 
inaryaxisshow thezerosofcos,(y)=Re{e&y)).An 
no value labels each of these zeros, and also labels 
the contour lines which show where Re{e,(r)J=O. 
Heavy black borders display the regions where 
Re{e,(r)} >O. 

Figure 10. A 'contour plot' of Im{e,(r)] in the com- 
plexrplane forq=0.35. Here, the 'solid circle points' 
along the imaginary axis show the zeros of sin,(?) = 
Im{e&y)). An n'value labels the sin,(],) zeros, and 
also labels contour lines which show where 
Im{e,(r)) =O. Heavy black borders show the regions 
where Im{eq(z)) > 0. The broken contour lines show 
the Re{e,(r)}=O contours overlaid from figure 9. 

- sinh,(x) = 1/2{e,(x) + e@( -x)} = -i sin,(&) 

these even/odd functions are simply flatter counterparts of the usual ones; for instance, 
for x>O they are both monotonic. Again 

(35) 
d .  - smh,(ax) =a cosh,(ux). 

d - c0sh.J~~) =a sinh,(ax) 
d+ d+ 

In terms of figures 1 and 2 they have a simple interpretation. Recall the e&) bound 
that le,(x)l <e,(lxl), so the distance of e&) below this upper bound for x<O is 

db E e,(bl) -e&) 

= -2 sinh&) x<o. (364 
Likewise, the distance above this lower bound for x<O is 

d. =e&) - {-e&I )} 

= 2 cosh&). (3@) 
So, in general this bound is a very poor envelope for e&). 

5. The reciprocal function e;'(z) 

By the Hadamard-Weierstrass factorization theorem, [I21 we can obtain the infinite 
product representation for e&) for O$q< 1. We first use the expression for log([n],!) 
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Figure 11 Contour plots of the complex function eJz) for the limiting caes q= 1 (top row) 
and for q=O (bottom row) for comparison with the previous two figures. The fust column, 
(4 and (c), show Re{e,(z)} and the second column, (b) and (d) ,  show Im{e,(z)}. The 
labelling is respectively as for figures 9 and 10. 

preceding (14b) to calculate the order p of the entire function e,(z). If the entire function 
f (z) is of order p, then 

f(z)=O{exp(ff3) 

as jzJ =r  + m, for every E EO, but not for any E< 0. Every polynomial is of order zero; 
for order zero entire functions 

f (2) -+ oIexp(r'% 
as IzJ = r  -t m. The standard formula for the order p c f )  for f(z)=XFso c,z" is [U] 

n log n 
p{e&)) = lim sup 

n-m log I l/cnl 

n l o g n  = lim sup 
n-m log([n],!) 
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where by (1 4b) 
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log([n],!)=n{(n-l)llogpl +llog(l -q)l} +r.. 

The remainder, which arises from the second 'braces' factor in (14b), is 

It is bounded by 

Therefore, the order 

Hence, for every q, O<q< 1, e&) is an entire function of order 0. For O < q <  I ,  e&) 
is not a polynomial, so it has infinitely many zeros. With 21, z2, . . . equal to the zeros 
(listed in order of increasing magnitude), the product representation is [12] (since 
40) = 1 ) 

where z.=jt.+iv, is the nth zero of e&). Therefore, the reciprocal function can also 
be written as an infinite product 

m 

e;'(z)= n (l-z/zn)-' q f l  
n-I 

where e;'(z)e,(x) =l.  Also for all &>O, the series 

converges, i.e. the exponent of convergence of the sequence { z " }  is zero. 
By multiplying out the product in (37), a sum rule for the zeros of e&) follows: 

m 

(l /zJ=-l  q+l .  
n- 1 

(39) 

In a separate paper, we will report on the higher-order sum rules for the zeros which 
follow from (37). (We have checked (39) numerically for -0.1 < q <  -0.8.) 

Similarly, it is straightforward to directly show that the following functions are also 
order zero for O<q<l: e:)@), e:-')(.), cos,(z) and sin&). Hence, since the usual 
exp(z), cos(z) and sin@) functions are of order 1, the order of these q-analogue entire 
functions is discontinuous in the limit q + 1. 
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Figure 12 Plot showing the universal behaviour of the reciprocal function e;'(=) for 
q<q: (q:;JO.I4). The simple poles at :,, with n = l ,  2, .  , . are shown by vertical broken 
lines. 

Figure 12 shows the universal behaviour of e;' for x i 0  and q < q f  (q:%O.14). As 
q is increased beyond qf x0.14, the pair-associated simple poles of e;' collide and move 
off into the complex z plane, etc. The discussion and figures 9-1 1 of section 3 for the 
properties of the zeros of e&) can be easily reinterpreted in terms of the poles of 
e;'(z). For example, the 'crossed-circle points' in these figures now show the location 
of the simple poles of e;'(.). For special q values, i.e. the collision points q:, e;'(z) 
does have a single double pole at z=x,* on the negative real axis. For q<qf ,  the infinite 
number of simple poles of e;'(z) lie only on the negative real axis. 
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Appendix 1. Properties of E&) 

For completeness, we briefly compare some of the analogous results [ l l ,2] for the 
altemative realization [13, 141 of the q-boson commutation relations in which b and b+ 
satisfy 

bb+-qb+b=l. 

where O i q c m .  Consequently the remaining 'type a' realization listed in [I31 is no 
different from this 'type 6' realization. 'Type a' is only a relabelling q -+ I / q  with b + a, 
b+ -, a+ so 

aa+-q-'U+a=1. 
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The q-cs are defined [ 141 by 

for O<q<l; [n], is defined below. The q-boson transformation 1131 from the upper 
equation in (4) to above realization is b=q""a, b+=~+g'~. The associated q-boson 
completeness relation [14] is 

' ~ ~ ( z ) ~ z ) J J < z ~  = 1  

with 

dp(z) (Wa)Eq(I 21 2)Ei/q(-q1z1 '1 dqlzI2 d e  O<q<l 

and lzlz<cJ. Here also it, is the E,,q(-qlzl')= {Eq(q1z[2)}-1 factor that is important in 
the measure. 

Figures 13 and 14 show the plots, respectively for q 2 l  and O < q <  1, of Jackson's 
q-exponential function [ 1 1 1  

For q ,  1, this series converges uniformly and absolutely for all finite z. There is an 
essential singularity at infinity. The oscillations increase in amplitude as J -* (-00). 

The properties of E&) for q> 1 appear qualitatively the same as those of e&) for 
q less than the first collision point at qtxO.14. Since eJx) b symmetric under q- I/q, 
the just cited properties of e&) reported in the text also hold for q> { l/q?] where 
l/q?x7.1. 

However, the zeros of E,(x) for q> 1 do not collide pairwise as q -+ 1 but instead 
move off  to infinity so that EJz)  + exp(z) as q -t 1. Also, as for e&), when q -+ CO a 

. .  
40 0 ' .  II 120 

, x- 

Figure 13. Plot showing the universal behaviour of Figure 14. Plot showing the universal behaviour of 
Jackson's K&) for q> I .  The broken curve for x E&) for q< 1. The broken curve for x negative is 
positive is exp(x). The zeros are exactly at enp(x). The simple poles at q-"/ ( l -q)  with N =  

p f= -q" / (q - l ) ;  n = l , 2  ,.... So as q - I  these 1,2 ,... areshownbyverticalbrokenlines. 
zeros move off to negative infinity. 
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single zero remains at z= -1 with E,(z) -t 1 +z. The zeros of E&) are at [ I  I] 

P:= f / ( l  - 4)  

Eq(x)=[l +XU -q-')I Eq(x/q). 

for n = 1,2, . . . . This follows (C Zachos, unpublished) easily from the recursion relation 

Iteration gives the infinite product representation 

m 

= n (1 + x( 1 - q-l)q-') 
,-0 

since for fixed x, q> 1, E,(x/qR) + Eq(0) = 1 as R + CO. Note that the sum rule 
X;& (l/pf) = -1 then follows easily since the p: form a geometric series. 

A simple way (C Zachos, unpublished) to obtain the recursion relation is to solve 
Jackson's q-derivative result Dq(Eq) =E,(x)= (E,(qx)- E , ( x ) } / { q x - q }  for E,(qx), and 
then let xq + x'. So, such recursion relations actually just re-express the term-by-term, 
power series agreement that shows D,(E,) equals Eq. 

The analogous recursion relation for e&) has two terms: 

eq(x)=eq(q-'x) +x(l -q-')eq(q-''2x). 

However, unlike for E&), this recursion relation does not simply yield a formula for 
the zeros of e,@). 

It is important that e&) for q> { I/&] has 'twice' as many zeros as E&). This is 
easily seen, for by (16) the zeros of e&) are asymptotically at p~=-q('-")' ' /(l-q) 
when O<q< 1. For comparison with the zeros of E&) which are at pf for  q >  1, we 
therefore substitute q + l/q in p: and find that for n =  1,2, . . . 

We use the notation q + l/q on the left-hand side of this equation to denote the explicit 
substitution which is required (because the text considers O<q< 1 and not 1 <q< CO) 

to compare the zeros of the text's e&) functions with this appendices' zeros for the 
E&) functions. This same notation is used below. 

For q> 1, the E,(.) zeros, or equivalently the E;'(x)  poles, do not collide because 
their collision partners simply do not exist. This observation is relevant to the physical 
significance of the different q-boson realizations. 

For O<q< 1, the series for the meromorphic function E&) converges uniformly 
and absolutely for 1x1 <(l-q)-', but diverges otherwise. However, for any s, 
E,(x)El/,(-x) = 1. So for q = 1 /s with s> 1, E,(x) = l/El/q(-x). Thus, for 0 < q< 1 figure 
14 follows with simple poles for E&) at q-"/(l -4) for n=O, 1, . . . . Since the series 
representation diverges at 1/(1 -q), one must analytically continue the function for x 
larger than this point. Therefore, it is not paradoxical that Eq(x) C O  for x> 0 and q < 1. 
For q < l ,  E,(x)+exp(x) as q-1, and E,(x)-t(l -x)-' as q-0. For comparison with 
eT1(z) of figure 12 in section 6, note that figure 14 can be interpreted as a plot of 
&'(x) except as plotted for the arguments g= I/q and R = - x  
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For q> 1, the complex z plane plots for Re{E,(z)} and for Im{E,(z)} are qualita- 
tively thesameas'theanalogousonesfore,(z)forq> { l / q f }  where l /qfz7.l .  However, 
there are in general only half as many trajectories for the zeros of E,(z) as there are 
for e,(x). This was shown above for zeros on the real axis. For along the imaginary 
axis, we define 1151 

Cos,(y)=.Re{E,(iy)) 

y" m - 
- " - 0  c (-Y[Zn]J! 

- - CO Y"" so (- )" [2n + 11 ,! . 

Sin,(y) =Im{Eq(iy)} 

For these functions there'is a matrix recursion relation: 

COS,(Y) = 1 - U  - 4 - 9 y  COsq(Y/q) 
(Sin,(y)) ((1 -q-l)y 1 )(Sin,(y/q)). 

However, for q> 1 these functions do have asymptotically half as many zeros as their 
respective counterparts cos,( y) and sin,( y )  of (29). In particular, the relations between 
the respective asymptotic formulae for their zeros for y 2 0  are 

and ($=O) 

PL - I /.%I,- I / p  = -- 4" + -PI q>>1. 
4 -  1 

For the rth derivative of E&), q< 1, 

we find the asymptotic formula for the zeros (va 1; n= 1,2, . . .) 

which can be improved by solving (p=q1 j4 )  
2n--l 

r !+  pzm(m--2n+I) ( m + r ) ( m + r - l )  ...( m+l)y"'=O 
,"-I 

where the improved 



Zeros of the q-analogue exponential funcfion 3879 

Similarly, for the rth indefinite integral 

m 4°C" ~ I1/2 x"" 
E/;)@) = C 

.=,( n + r ) ( n + r - I )  . . . (  n+I) [n],! 

P=n('n-2n+ y = 0 .  
1 2n-I 

v !  ( m + r ) ( m + r - I )  . . .(  m + l )  -+ c 
Lastly, as in section 5, it is straightforward to directly show for 4' 1 that the following 
entire functions are also order zero: Eq(z), E:)@), E:-')(z), Cos&) and Sin,(z). 

Appendix 2. Auxiliary q-boson operators &, 

Auxiliary q-boson operators were introduced in [7] .  For k fixed, we set T=j+k and 
require 

and 

if&k. ri*'f)3V+I] 1/2 ~ 1J+1) 7 

a&= [Rk+ I] 

So + ) = O .  Then in the In), basis, on the subspace spanned by lk+j), j 2 0 ,  

-+- - - 
a k a k  - [Nk] 

where &Jj+k)=jj+k).  Also, [Rk,Z;]=c?;, [&,&]=-&. Thus, for each distinct 
k, & and $ are defined on an infinite-dimensional subspace Ik+j), j 2 0 ,  and satisfy a 
quantum algebra 

ri,g - q* I /2$& = q'w2 

on this subspace. 

Appendix 3. Other results about edz) 

Contribufions to e&) and e;(x) from neglected terms 

For e&), the contributions from the neglected terms at the asymptotic zero values, 
x=fi: ,  can be systematically evaluated. These corrections arise from the '{} + 1' 
approximation to [n]! in (14a) and from the neglected r 2 2 n  terms in (176): 
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Similarly, for the first derivative e;(x), we find 

e;(?,) =3q'/'i2+ O(q312) 
3/2 e6(fZ)=5qy4+o(q 

e;(f3)=7y3'2y6+O(q2) 

e;(?.,) =q2y6(9y2 + Sy) +0($3 

e;(?") =2ngZy2"-' +0(qsI2) n > 5  

where yn= -n/(n+ 1) is the solution to the associated asymptotic polynomial (20). 

Properties of the approximate series e$(x) 

The approximate series e$(.), given in (15), has been introduced as auseful approxima- 
tion to e&) for q<c1. As q + O ,  bothe,and e$ + z +  1, but asq- t  1, e$ + 1 and not to 
the usual exp(z). Nevertheless, we do find numerically that the exact zeros of the 
approximate series e t  (x) also collide in pairs as q increases above q,& ~ 0 . 0 9 5  in a 
similar manner to what occurs for the q-exponential function itself, e,(x). For compari- 
son with the (q*, x* )  values for e,(x) which are listed in table 2, for e$(.) we find the 
first five collision points are (qXI, x&)=(0.0956, -2.566), (0.2677, -8.263), 
(0.3977, -14.73), (0.4917, -21.49) and (0.5614, -28.41). So the collisions occur at 
somewhat smaller q* and x* values for c(x) than for e&). 

For q<<l, in the text following (15), the geometric mean 1x1 =p""(1 -q)-I of the 
interval associated with the term ' cPP in the e$(.) series is introduced. Note that at 
the geometric mean 

-$+I9 c,-.lzI'-"=p 

gives the value of the other terms of the series (for n negative and positive). Thus, c,f' 
dominates the sum in magnitude for e$(x) when 

Ic,a'l)l+slz~+ ...+ c,-'I~.I'-~+c,+llq'+'+. .. 

-9 > 2{ p-"+ I +p-'+4 +p-'+P + . . .} 

1 > 2{ p +p4+p9 + . . . + p'd + . . .} , 

or 

P 
or 

This last inequality holds when p<0.455 933 17 . . . , y <0.043 212 024. . . . Note that 
in the p-' and following other inequality the expressions only go back to co= 1, but 
go from c , + ~  on to infinity. So for q<O.O432, the c , l  term does, indeed, dominate the 
sum in magnitude for the e$(.) series. 
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